		Application poss	ibilities			
Nitrocellulose	Water based	Decorative laminates	PVB	PVC inks	Offset	UV curii
		•				•
		•				•
•	•		•		0	•
	•				0	
•	•				0	0
0	•			•		•
0	•	•	0			•
				•		•
0 •		•	•		•	•
•	•	•	•		•	•
0	0	0				
0	•				0	
•	0					0
0	•		0			0
0	•		•			0
				•		•
0		0	0			•
0	•	•	0		0	•
0	•	0			0	•
•	•				0	
0	•	•	0	•	0	•
•	•	•	•		0	•
•	•	•	0	•	0	•
•	•	•	•	0		•
•	•		•	0	0	•
•	•	•	0		•	•
						•
•	•				0	0
•	•				0	0
0	•	0			0	•
0	•				•	
	•			•		•
•	•	0	0	0		•
•	•	0	0		0	•
		0		0		•
					•	
•	•	•			•	•
•	•	0	•	•		•
•	•	0	•	•	•	•
•	•		•	•	•	•

Synthesia, a. s., SBU Pigments and Dyes Semtín 103, 530 02 Pardubice, Czech Republic e-mail: colorants@synthesia.eu

Sales of pigments - phone: +420 466 823 741, fax: +420 466 823 608 e-mail: pigments@synthesia.eu

Technical service - phone: +420 466 823 730, fax: +420 466 823 608 e-mail: technicals@synthesia.eu

Affiliations abroad

Synthesia, Moscow Representative 3. Tverskaya - Yamskaya, dom 36, 125047 Moscow, Russia phone: +7 903 661 5374, +420 724 401 122 e-mail: office.moscow@synthesia.eu

Synthesia Polska Sp. z o. o.

Al. Kościuszki 80/82, 90-437 Łódž, Poland phone/fax: +48 426 375 720, e-mail: jan.hronek@synthesia.com.pl Versal® organic pigments for printing inks

Chemistry for the future

www.synthesia.eu

Application possibilities • main application • o side application

TiO ₂						
1:1	1:10	Trade Name Versal®	C. I. Pigment	Chem. Type	HP Pigment	Transparency
		Yellow E5G	Yellow 150	Metal Complex	•	medium
		Yellow E5G 110	Yellow 150	Metal Complex	•	medium
		Yellow 7GX	Yellow 111	Monoazo		medium
		Yellow 10GD	Yellow 4	Monoazo		medium
		Yellow 10G	Yellow 3	Monoazo		medium
		Yellow 8GN	Yellow 128	Disazo Cond.	•	high
		Yellow H4G	Yellow 151	Benzimidazolone	•	low
		Yellow 3G	Yellow 93	Disazo Cond.	•	medium
		Yellow 5GD	Yellow 155	Bisacetoacetarylide	•	low
		Yellow 4GN	Yellow 155	Bisacetoacetarylide	•	medium
		Yellow H3G	Yellow 154	Benzimidazolone	•	medium
		Yellow 5GXW	Yellow 74	Monoazo		medium
		Yellow 5GXS	Yellow 74	Monoazo		high
		Yellow G	Yellow 1	Monoazo		medium
		Yellow 2GXD	Yellow 74	Monoazo		low
		Yellow GR	Yellow 95	Disazo Cond.	•	medium
		Yellow 5RDP	Yellow 139	Isoindoline	•	high
		Yellow H3R	Yellow 181	Benzimidazolone	•	medium
		Orange HLD	Orange 36	Benzimidazolone	•	low
		Red 2GC	Red 4	β-naphthol		medium
		Scarlet 4RF	Red 242	Disazo Cond.	•	medium
		Red HF3S	Red 188	Naphthol AS		high
		Scarlet R	Red 166	Disazo Cond.	•	low
		Scarlet RT	Red 166	Disazo Cond.	•	high
		Red FGRD	Red 112	Naphthol AS		medium
		Red DP3G	Red 254	Diketopyrrolopyrrole	•	medium
		Red DP2G	Red 254	Diketopyrrolopyrrole	•	low
		Red F2RA	Red 2	Naphthol AS		medium
		Red F2RF	Red 2	Naphthol AS		medium
		Red F3RKD	Red 170	Naphthol AS		medium
		Red 3RLT	Red 48:3	BONA Lake		medium
		Red BR	Red 144	Disazo Cond.	•	medium
		Red BRN	Red 214	Disazo Cond.	•	medium
		Red F5RK	Red 170	Naphthol AS		high
		Red A2B	Red 177	Anthraquinone	•	high
		Red F6R0	Red 57:1	BONA Lake		high
		Red HF3C	Red 176	Benzimidazolone	•	medium
		Blue ASG	Blue 15:1	Phthalocyanine		medium
		Blue LBS	Blue 15:3	Phthalocyanine		medium
		Green BG	Green 7	Phthalocyanine		medium

Light		Phys	sical Data	Fastness to solvents and chemicals						
full shade	1/3	density	oil absorption	Xylene	Acetone	Butylacetate	Ethanol	Water	HCI	NaOH
7-8	7	1.50	62	5	4-5	4-5	5	5	4	5
7-8	7	1.85	80	5	4-5	4-5	5	5	4	5
7	5-6	1.50	40	1-2	2-3	2	4-5	5	5	5
7	6-7	1.37	72	2-3	2-3	2	3	5	5	4
7	6-7	1.60	40	2	2-3	2	3	5	5	5
7-8	7	1.50	80	5	3-4	4-5	5	5	5	5
7-8	7-8	1.50	83	4-5	4-5	5	5	5	5	3
7-8	7	1.45	63	5	5	5	5	5	5	5
7-8	7	1.40	70	4-5	4	4-5	5	5	5	5
7-8	7	1.40	87	4-5	4	4-5	5	5	5	5
7-8	7-8	1.60	55	5	4-5	5	4-5	5	5	5
6-7	5-6	1.45	78	3	3	3	4	5	5	5
6-7	5-6	1.40	62	3	3	2-3	4	5	5	5
7	5-6	1.46	62	2-3	2	2-3	3	5	5	5
7	6	1.50	70	3	3	3	4	5	5	5
7-8	7-8	1.49	90	5	5	5	5	5	5	5
7	6-7	1,70	97	5	5	4-5	5	3	5	3
7	6-7	1.47	84	4-5	4	4-5	4-5	5	5	5
7-8	7	1.60	58	4-5	4-5	4-5	4-5	5	5	5
6	3	1.51	48	2	2-3	2-3	3-4	5	5	5
7-8	7	1.60	60	4	3-4	4	4-5	5	5	5
6-7	6	1.49	64	4	4	4	4-5	5	5	5
7-8	7	1.50	83	4-5	5	4-5	5	5	5	5
7	6-7	1.44	44	4	4	4-5	5	5	5	5
7-8	6-7	1.60	43	2-3	3	3	3-4	5	5	5
7-8	7	1.60	47	5	4	5	5	5	5	5
7-8	7	1.57	61	4-5	3	4	4	5	5	5
6-7	4-5	1.44	61	2	2	2	2	5	5	5
6-7	4-5	1.50	46	2	2	2	2	5	5	5
7	5-6	1.40	67	4-5	4	4-5	4-5	5	5	5
6	4	1.70	81	4	4	4	4-5	4-5	4	4
7-8	7-8	1.50	78	4-5	4-5	4-5	5	5	5	5
7-8	7-8	1.50	61	4	4-5	4-5	5	5	5	5
6D	5	1.40	51	4-5	3	4	4	5	5	5
7-8	7	1.47	89	5	4	4-5	4-5	5	5	5
4-5	4	1.60	85	4	3-4	4	4	4-5	3	3
6-7	6	1.50	79	4-5	3	3-4	3-4	5	5	5
7-8	7-8	1.60	69	5	5	5	5	5	5	5
7-8	7-8	1.70	80	4	5	5	5	5	5	5
7-8	7-8	2.1	52	5	5	5	5	5	5	5
7-0	7-0	₹.1	عد	ر	ر	ر	ر	ر	د	ر

Synthesia, a.s.

Synthesia is the largest Czech manufacturer of chemical specialities with more than 95 years' tradition.

Synthesia respects the company objective to offer top products with high added value and specialized customer solutions, including not only production but also development activities and services. We are the leading Central European producer of organic pigments and dyes and the only producer of high performance pigments in Central Europe. Our company has experience in sales all over the world, especially in the most demanding markets in Western and Eastern Europe as well as the U.S.A.

VERSAL®

Due to the same chemical structure, identical or very close matching colour shade and other important properties a large number of pigments can be replaced by Versal pigments.

The assortment VERSAL® is formed by various chemical types and can be used in wide range of application in such as coatings, printing inks, plastics, fibres, particularly if special technical properties are required.

The most significant part of VERSAL® pigments (High-Performance Pigments) is above all a provision of very good fastness to light and weathering, heat resistance, fastness to solvents and chemicals and due to these excellent properties can be used in the most demanding applications.

In this pattern card we introduce our wide range of organic powder pigments meeting the specific demands of printing industry. We are proud to be a European pigment producer offering high quality and consistent products in respect of colour as well as application properties. In addition to that, product safety and regulatory compliance are also our main focus.

PHYSICAL PROPERTIES AND FASTNESS

Light fastness - Xenotest

- determined by CSN EN ISO 105-B02: 2000 (80 0147) and evaluated in 1/3 and 1/1 of standard depth and in full shade; by it degree 1 denotes the lowest fastness and degree 8 the highest one.

Density

- determined by ČSN EN ISO 787-10: 1997 (67 0520) in $\rm g/cm^3$

Oil absorption

- determined by ČSN EN ISO 787-5: 1997 (67 0520) in ml/100 g pigment

Fastness to solvents

- colouring of solvent after 24 h at 20 °C according to ISO grey scale is determined; degree 1 denotes the lowest fastness, degree 5 the highest one.

D - duller